Zoonotic potential of a novel bat morbillivirus

Author:

Lee Benhur1ORCID,Ikegame Satoshi1,Carmichael Jillian1ORCID,Wells Heather2ORCID,Furler Robert3ORCID,Acklin Joshua1,Chiu Hsin-Ping1,Oguntuyo Kasopefoluwa4,Cox Robert5ORCID,Patel Aum1,Kowdle Shreyas1ORCID,Stevens Christian1,Eckley Miles6,Zhan Shijun6,Lim Jean1,Hashiguchi Takao7ORCID,Durigon Edison Luís8,Schountz Tony6,Epstein Jonathan9ORCID,Plemper Richard5ORCID,Daszak Peter9ORCID,Anthony Simon10

Affiliation:

1. Icahn School of Medicine at Mount Sinai

2. Columbia Univesity

3. Weill Cornel Medicine

4. Icahn School of Medicine

5. Georgia State University

6. Colorado State University

7. Kyushu University

8. Universidade de São Paulo

9. EcoHealth Alliance

10. UC Davis School of Veterinary Medicine

Abstract

Abstract Bats are significant reservoir hosts for many viruses with zoonotic potential1. SARS-CoV-2, Ebola virus, and Nipah virus are examples of such viruses that have caused deadly epidemics and pandemics when spilled over from bats into human and animal populations2,3. Careful surveillance of viruses in bats is critical for identifying potential zoonotic pathogens. However, metagenomic surveys in bats often do not result in full-length viral sequences that can be used to regenerate such viruses for targeted characterization4. Here, we identify and characterize a novel morbillivirus from a vespertilionid bat species (Myotis riparius) in Brazil, which we term myotis bat morbillivirus (MBaMV). There are 7 species of morbilliviruses including measles virus (MeV), canine distemper virus (CDV) and rinderpest virus (RPV)5. All morbilliviruses cause severe disease in their natural hosts6–10, and pathogenicity is largely determined by species specific expression of canonical morbillivirus receptors, CD150/SLAMF111 and NECTIN412. MBaMV used Myotis spp CD150 much better than human and dog CD150 in fusion assays. We confirmed this using live MBaMV that was rescued by reverse genetics. Surprisingly, MBaMV replicated efficiently in primary human myeloid but not lymphoid cells. Furthermore, MBaMV replicated in human epithelial cells and used human NECTIN4 almost as well as MeV. Our results demonstrate the unusual ability of MBaMV to infect and replicate in some human cells that are critical for MeV pathogenesis and transmission. This raises the specter of zoonotic transmission of a bat morbillivirus.

Publisher

Research Square Platform LLC

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3