Affiliation:
1. Tongji University
2. National Kaohsiung University of Science and Technology
Abstract
Abstract
2,4,6-Trichloroanisole (2,4,6-TCA) has aroused a special concern for their odor problem and potential threats. In this study, the degradation of 2,4,6-TCA by UV/chlorination with different UV sources was compared, including low-pressure mercury lamp (LPUV, 254 nm) and ultraviolet light-emitting diode (UV-LED, 275 and 285 nm). The maximum removal of 2,4,6-TCA can be achieved by 275 nm UV-LED/chlorination in neutral and alkaline conditions was 80.0%. The reaction, kinetics and water matrix parameters on 2,4,6-TCA degradation were also evaluated. During UV-LED (275 nm)/chlorination, 2,4,6-TCA degradation was mainly caused by direct UV photolysis and indirect hydroxyl radical (HO•) oxidation, while reactive chlorine radicals (RCSs) had a negligible contribution. The second-order rate constant between HO• and 2,4,6-TCA was determined as 3.1×109 M-1s-1. Increasing initial chlorine dosage and decreasing 2,4,6-TCA concentration or pH value significantly promoted 2,4,6-TCA degradation during UV/chlorination process. The presence of natural organic matter (NOM) and bicarbonate (HCO3-) can inhibit 2,4,6-TCA degradation, while chloride ion (Cl-) had a negligible effect. The kinetic model for 2,4,6-TCA degradation was established and validated, and the degradation pathways were proposed based on the identified intermediates. Furthermore, UV-LED (275 nm)/chlorination also exhibited a promising effect on 2,4,6-TCA removal in real water, which can be used to control 2,4,6-TCA pollution and odor problems.
Publisher
Research Square Platform LLC
Reference66 articles.
1. A review on advanced oxidation processes for the removal of taste and odor compounds from aqueous media;Antonopoulou M;Water Res,2014
2. Association APH, Association AWW (1995) Standard methods for the examination of water and wastewater, Standard methods for the examination of water and wastewater, pp [1000]-[1000]
3. Analysis of off-flavors in the aquatic environment by stir bar sorptive extraction–thermal desorption–capillary GC/MS/olfactometry;Benanou D;Anal Bioanal Chem,2003
4. Identification of 2,4,6-trichloroanisole as a potent compound causing cork taint in wine;Buser HR;J Agric Food Chem,1982
5. Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (⋅OH/⋅O-) in Aqueous Solution;Buxton GV;J Phys Chem Ref Data,1988