A plant litter decay experiment unveiled anaerobic lignin decomposition in a rewetted peatland

Author:

Reuter Julia1,Reuter Hendrik1,Zak Dominik2ORCID

Affiliation:

1. Leibniz Institute of Freshwater Ecology and Inland Fisheries: Leibniz-Institut fur Gewasserokologie und Binnenfischerei

2. Aarhus University: Aarhus Universitet

Abstract

Abstract The rewetting of long-term drained peatlands leads to the development of eutrophic shallow lakes, gradually inhabited by reed communities. These shallow lakes are characterized by significant nutrient and methane emissions. To gain a better understanding of the fate of organic compounds derived from decaying Phragmites australis litter in both the aquatic phase and underlying anaerobic soil layers, a decomposition experiment was conducted over a period of approximately 1.6 years. The experiment employed bulk and lignin-derived phenol analysis, as well as Fourier-transform infrared spectroscopy. As anticipated, the highest level of decomposition was observed in the surface water body of the shallow lake, while the non-rooted degraded peat exhibited the lowest decay. The bulk mass loss of plant litter decreased with depth from 55–27% across the four decomposition environments. Analysis using infrared spectroscopy indicated that the decrease in mass loss was primarily driven by the breakdown of carbohydrates, which constitute a significant portion of plant litter. Interestingly, the rooted degraded peat layer exhibited the highest degree of lignin decay. Furthermore, the study revealed a preferential loss of vanillin phenols and an accumulation of p-hydroxyl phenols. These findings suggest that the increased methane emissions in rewetted fens may be partially attributed to the demethoxylation of vanillin phenols and the subsequent formation of p-hydroxyl phenols. In conclusion, this study provides valuable insights into anaerobic lignin decomposition of plant litter and sheds light on potential mechanisms underlying methane emissions in rewetted peatlands.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3