Prediction of PD-L1 tumor positive score in lung squamous cell carcinoma with H&E staining whole slide images and deep learning

Author:

Wang Qiushi1,Deng Xixiang2,Huang Pan2,Ma Qiang1,Zhao Lianhua1,Feng Yangyang1,Wang Yiying1,Zhao Yuan1,Chen Yan1,Zhong Peng1,He Peng2,Feng Peng2,Xiao Hualiang1

Affiliation:

1. Army Medical University

2. Chongqing University

Abstract

Abstract Purpose Detecting programmed death ligand 1 (PD-L1) expression based on immunohistochemical (IHC) staining is an important guide for the treatment of lung cancer with immune checkpoint inhibitors. However, this method has problems such as high staining costs, tumor heterogeneity, and subjective differences among pathologists. Therefore, the application of deep learning models to segment and quantitatively predict PD-L1 expression in digital sections of Hematoxylin and eosin (H&E) stained lung squamous cell carcinoma is of great significance. Materials and Methods We constructed a dataset comprising H&E-stained digital sections of lung squamous cell carcinoma and used a Transformer Unet (TransUnet) deep learning network with an encoder-decoder design to segment PD-L1 negative and positive regions and quantitatively predict the tumor cell positive score (TPS). Results The results showed that the dice similarity coefficient (DSC) and intersection overunion(IoU) of deep learning for PD-L1 expression segmentation of H&E-stained digital slides of lung squamous cell carcinoma were 80% and 72%, respectively, which were better than the other seven cutting-edge segmentation models. The root mean square error (RMSE) of quantitative prediction TPS was 26.8, and the intra-group correlation coefficients with the gold standard was 0.92 (95% CI: 0.90–0.93), which was better than the consistency between the results of five pathologists and the gold standard. Conclusion The deep learning model is capable of segmenting and quantitatively predicting PD-L1 expression in H&E-stained digital sections of lung squamous cell carcinoma, which has significant implications for the application and guidance of immune checkpoint inhibitor treatments.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3