Sub-lethal doses of chemotherapeutic agents induce senescence in T cells and upregulation of PD-1 expression

Author:

Kasamatsu Tetsuhiro1,Awata-Shiraiwa Maaya2,Ishihara Rei2,Murakami Yuki2,Masuda Yuta2,Gotoh Nanami1,Oda Tsukasa3,Yokohama Akihiko4,Matsumura Ikuko5,Handa Hiroshi5,Tsukamoto Norifumi6,Murakami Hirokazu2,Saitoh Takayuki1

Affiliation:

1. Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences

2. Gunma University of Health and Welfare

3. Institute of Molecular and Cellular Regulation, Gunma University

4. Blood Transfusion Service, Gunma University Hospital

5. Department of Hematology, Gunma University

6. Oncology Center, Gunma University Hospital

Abstract

Abstract Cellular senescence refers to a pause in the cell cycle, usually in response to internal and/or external stress, including telomere dysfunction, abnormal cellular growth, and DNA damage. Several chemotherapeutic drugs, such as melphalan (MEL) and doxorubicin (DXR), induce cellular senescence in cancer cells. However, it is not clear whether these drugs induce senescence in immune cells. We evaluated the induction of cellular senescence in T cells were derived from human peripheral blood mononuclear cells (PBMNCs) in healthy donors using sub-lethal doses of chemotherapeutic agents. The PBMNCs were kept overnight in RPMI 1640 medium with 2% phytohemagglutinin and 10% fetal bovine serum and then cultured in RPMI 1640 with 20 ng/mL IL-2 and sub-lethal doses of chemotherapeutic drugs (2 µM MEL and 50 nM DXR) for 48 h. Sub-lethal doses of chemotherapeutic agents induced phenotypes associated with senescence, such as the formation of γH2AX nuclear foci, cell proliferation arrest, and induction of senescence-associated beta-galactosidase (SA-β-Gal) activity, (control vs. MEL, DXR; median mean fluorescence intensity (MFI) 1883 (1130–2163) vs. 2233 (1385–2254), 2406.5 (1377–3119), respectively) in T cells. IL6 and SPP1 mRNA, which are senescence-associated secretory phenotype (SASP) factors, were significantly upregulated by sublethal doses of MEL and DXR compared to the control (P = 0.043 and 0.018, respectively). Moreover, sub-lethal doses of chemotherapeutic agents significantly enhanced the expression of programmed death 1 (PD-1) on CD3 + CD4 + and CD3 + CD8 + T cells compared to the control (CD4 + T cells; P = 0.043, 0.043, and 0.043, respectively, CD8 + T cells; P = 0.043, 0.043, and 0.043, respectively). Our results suggest that sub-lethal doses of chemotherapeutic agents induce senescence in T cells and tumor immunosuppression by upregulating PD-1 expression on T cells.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3