Pattern recognition using spiking antiferromagnetic neurons

Author:

Bradley Hannah1,Louis Steven1,Slavin Andrei1,Tyberkevych Vasyl1

Affiliation:

1. Oakland University

Abstract

Abstract

Spintronic devices offer a promising avenue for the development of nanoscale, energy-efficient artificial neurons for neuromorphic computing. It has previously been shown that with antiferromagnetic (AFM) oscillators, ultra-fast spiking artificial neurons can be made that mimic many unique features of biological neurons. In this work, we train an artificial neural network of AFM neurons to perform pattern recognition. A simple machine learning algorithm called spike pattern association neuron (SPAN), which relies on the temporal position of neuron spikes, is used during training. In under a microsecond of physical time, the AFM neural network is trained to recognize symbols composed from a grid by producing a spike within a specified time window. We further achieve multi-symbol recognition with the addition of an output layer to suppress undesirable spikes. Through the utilization of AFM neurons and the SPAN algorithm, we create a neural network capable of high-accuracy recognition with overall power consumption on the order of picojoules.

Publisher

Research Square Platform LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Antiferromagnetic artificial neuron modeling of the withdrawal reflex;Journal of Computational Neuroscience;2024-07-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3