sCLC: a Clustering Linear Combination (CLC) Method for Multiple Phenotype Association Studies Based on GWAS Summary Statistics

Author:

Wang Meida1,Cao Xuewei1,Zhang Shuanglin1,Sha Qiuying1

Affiliation:

1. Michigan Technological University

Abstract

Abstract There is strong evidence showing that joint analysis of multiple phenotypes in genome-wide association studies (GWAS) can increase statistical power when detecting the association between genetic variants and human complex diseases. We previously developed the Clustering Linear Combination (CLC) method and a computationally efficient CLC (ceCLC) method to test the association between multiple phenotypes and a genetic variant, which perform very well. However, both of these methods require individual-level genotypes and phenotypes that are often not easily accessible. In this research, we develop a novel method called sCLC for association studies of multiple phenotypes and genetic variants based on GWAS summary statistics. We use the LD score regression to estimate the correlation matrix among phenotypes. The test statistic of sCLC is constructed by GWAS summary statistics and has an approximate Cauchy distribution. We perform a variety of simulation studies and compare sCLC with other commonly used methods for multiple phenotype association studies using GWAS summary statistics. Simulation results show that sCLC can control Type I error rates well and has the highest power in most scenarios. Moreover, we apply the newly developed method to the UK Biobank GWAS summary statistics from the XIII category with 70 related musculoskeletal system and connective tissue phenotypes. The results demonstrate that sCLC detects the most number of significant SNPs, and most of these identified SNPs can be matched to genes that have been reported in the GWAS catalog to be associated with those phenotypes. Furthermore, sCLC also identifies some novel signals that were missed by standard GWAS, which provide new insight into the potential genetic factors of the musculoskeletal system and connective tissue phenotypes.

Publisher

Research Square Platform LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3