NEK2 Promotes the Migration, Invasion, Proliferation and Drug Resistance of ESCC Through the E2F1-IGF2 Pathway

Author:

Gu Shaorui1,Wang Mengying2,Zhu Pengyuan1,Yasen YakuFujiang1,Zhou Yongxin1,Wang Wenli1

Affiliation:

1. Shanghai Tongji Hospital Affiliated with Tongji University

2. Shuguang Hospital, Shanghai University of Traditional Chinese Medicine

Abstract

Abstract Purpose:Esophageal squamous cell carcinoma(ESCC) is a disease with a high incidence rate and high mortality worldwide. The Never in Mitosis A (NIMA) family member NIMA-related kinase 2 (NEK2) plays an important role in mitosis. However, the role of NEK2 in the pathogenesis of ESCC remains unclear. Patients and methods:The expression and function of NEK2 in TCGA and GEO data sets were analyzed by bioinformatics.We verified the expression of NEK2 in ESCC tissues and cell lines by Western blotting and immunohistochemical methods and further explored the relationship between tumor stage and NEK2 expression. The differences in NEK2 expression and survival in patients with EC were verified by bioinformatics analysis. ESCC cell lines with stable knockdown of NEK2 were established by lentivirus-mediated shRNA delivery. The effects of NEK2 on ESCC cells were analyzed on the cytological level with assays including CCK-8, EdU, cell scratch, Transwell migration and invasion, colony formation, flow cytometry and apoptosis assays. Tumor growth was measured in a mouse xenograft model. Results: We found that NEK2 is highly expressed in ESCC tissues and ESCC cells and that the high expression of NEK2 is associated with poor tumor healing. Knockdown of the NEK2 gene inhibits the migration, proliferation, invasion and cell cycle of ESCC cells. Biologic analysis shows that NEK2 is involved in biological processes such as progression and apoptosis of esophageal cancer, and is related to E2F.Mechanistically, NEK2 knockdown decreases the expression levels of E2F1 and IGF2. NEK2 competes with the transcription factor E2F1 to bind CDC20, resulting in decreased degradation and increased expression of E2F1. There is a positive correlation between E2F1 expression and IGF2 expression; thus, IGF2 expression is also increased, which promotes the expression of thymidylate synthase, further promoting the drug resistance of ESCC cells. Conclusion: NEK2 is highly expressed in ESCC and can promote the migration, proliferation and invasion of ESCC cells. The NEK2-E2F1-IGF2 signaling pathway has great significance for the treatment of ESCC.

Publisher

Research Square Platform LLC

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3