SIR Epidemics in Interconnected Networks: threshold curve and phase transition

Author:

Das Saswata1,Scoglio Caterina1

Affiliation:

1. Kansas State University

Abstract

Abstract For simplicity of mathematical modelling of epidemic spreading, assumption is that hosts have identical rate of disease-causing contacts. However, in real world the scenario is different. The network-based framework allows us to capture the complex interdependencies and structural heterogeneity present in real-world systems. We examine two distinct scenarios involving the dynamics of Susceptible-Infected-Recovered (SIR) in interconnected networks. In the first part, we show how the epidemic threshold of a contact network changes as a result of being coupled with another network for a fixed infection strength. The model employed in this work considers both the contact networks and interconnections as generic. We have depicted the epidemic threshold curve for interconnected networks, considering the assumption that the infection could be initially present in either one or both of the networks. If the normalized infection strengths are above the threshold curve, the infection spreads, whereas if the normalized infection strengths are below the threshold curve, the disease does not spread. This is true for any level of interconnection. In the second part, we investigate the spillover phenomenon, where the disease in a novel host population network comes from a reservoir network. We have observed a clear phase transition when the number of links or the inter-network infection rate exceeds a certain threshold, keeping all other parameters constant. We observe two regimes for spillover: a major spillover region and a minor spillover region based on interpopulation links (fraction of links between two networks) and inter-network infection strength (infection rate between reservoir and host network). If the interpopulation links and inter-network infection strength are in the major spillover region, the spillover probability is high, while if the former parameters are in the minor spillover region, the spillover probability is low. When the number of infected individuals within a reservoir network is nearly equal, and the inter-network infection strength remains constant, the threshold number of links required to achieve the spillover threshold condition varies based on the network topology. Overall, this work contributes to the understanding of SIR dynamics in interconnected networks and sheds light on the behavior of epidemics in complex systems.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3