An artificial intelligence-driven 3D-vectorcardiography technique for non-invasive prediction of obstructive coronary artery disease: a prospective study

Author:

Fezer Sophie1,Heinroth Konstantin2,Melnyk Hannes1,Plehn Alexander1,Michalski Roman1,Tongers Jörn1,Daniel Jan-Marcus1,Dutzmann Jochen1,Hortmann Marcus1,Vogt Alexander1,Sedding Daniel1,Arya Arash1

Affiliation:

1. University Hospital Halle (Saale), Martin-Luther University Halle-Wittenberg. Halle (Saale)

2. Hospital Martha-Maria Halle-Dölau

Abstract

Abstract

Cardiovascular disease, particularly coronary artery disease (CAD), is the leading cause of death in industrialized nations. Invasive coronary angiography is the diagnostic gold standard for ischemic heart disease but is costly, and complex. An innovative approach employs artificial intelligence (AI) in 3D-vectorcardiography for non-invasive identification of obstructive coronary lesions, integrating neural networks within a supervised learning framework. This study aimed to evaluate the accuracy of AI-driven 3D-vectorcardiography for noninvasive identification of obstructive CAD compared to invasive coronary angiography. In a prospective blinded study, 183 patients with possible CAD underwent AI-driven 3D-vectorcardiography before coronary angiography. A neural network AI algorithm calculated parameters, including a perfusion factor, to assess the probability of obstructive CAD. Investigators analyzing the AI-driven 3D-vectorcardiography and coronary angiographies were unaware of each other’s results. The clinical risk model had a receiver operating characteristic (ROC) area under the curve (AUC) of 0.617. Incorporating AI-driven 3D-vectorcardiography considerable improved prediction accuracy, achieving an AUC of 0.716. AI-driven 3D-vectorcardiography is a simple and effective diagnostic tool for enhancing the noninvasive detection of obstructive CAD. Further studies using fractional flow reserve (FFR) and microcirculation measurements are needed to better define its role in predicting cardiac ischemia and CAD.

Publisher

Research Square Platform LLC

Reference23 articles.

1. WHO. ‘WHO reveals leading causes of death and disability worldwide: 2000–2019’. https://www.who.int/news/item/09-12-2020-who-reveals-leading-causes-of-death-and-disability-worldwide-2000-2019 (Accessed: Oct. 29, 2023).

2. Deutsche Herzstiftung, ‘Deutscher Herzbericht 2022’, Frankfurt am Main, Sep. 2023.

3. D. T. Bertolone et al., ‘Contemporary management of stable coronary artery disease’, High Blood Pressure and Cardiovascular Prevention, vol. 29, no. 3, pp. 207–219, May 2022, doi: 10.1007/s40292-021-00497-z.

4. ‘Cardiovascular imaging techniques for the assessment of coronary artery disease’;Ahmed R;Br J Hosp Med,2022

5. Bundesärztekammer, Kassenärztliche Bundesvereinigung, and Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften, ‘Nationale VersorgungsLeitlinie Chronische KHK – Langfassung, Version 6.0’, 2022. https://register.awmf.org/assets/guidelines/nvl-004l_S3_KHK_2022-09.pdf (Accessed: Jan. 25, 2023).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3