Ecotoxicological effects of a glyphosate-based herbicide on Gryllus (Gryllus) assimilis (Orthoptera: Gryllidae) ontogeny: A study on antioxidant system, oxidative stress and cholinergic system

Author:

Macarini Leanna Camila1,Guimarães Ana Tereza Bittencourt1,Szinwelski Neucir1

Affiliation:

1. Universidade Estadual do Oeste do Paraná

Abstract

Abstract Brazil is an important global agricultural producer and to increase production the country has extensively used glyphosate-based herbicides (GBH), surpassing consumption and sales records. Consequently, concerns have arisen regarding the potential impact of GBH on ecosystems and non-target organisms. Thus, the effects of GBH exposure were evaluated throughout the cricket Gryllus (Gryllus) assimilis ontogeny, with five developmental stages. Each period contained 3 control and 3 treated boxes, with 15 crickets each, resulting in 90 insects at a time. The control groups received water, while the treated ones were continuously exposed to GBH (0.864 mg.GBH.L-1), with the solutions changed every 48 hours. After each exposure time the crickets’ group were euthanized to assess the activity of antioxidant enzymes (GST, GR, GPx, and CAT), cholinergic enzymes (ChE), and lipid peroxidation (LPO). The results revealed changes in the systems throughout different developmental phases. Specifically, CAT activity exhibited a significant increase during the nymphal phase, associated with the dismutation of hydrogen peroxide. The GST increased GBH, indicating its role in cellular detoxification, particularly during adulthood. In the senescence stage there was a considerable rise in ChE enzymes, suggesting their involvement in both, choline esters breakdown and potential pesticide detoxification. The action of these enzymes to effectively control lipid peroxidation shows the adaptability of this species to environmental contamination. These findings underscore the long-term effects of agrochemical pollution and emphasize the importance of sustainable practices, effective regulations, and alternative weed control methods.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3