Mechanisms of oxidative response during biodegradation of malathion by S. oneidensis MR-1

Author:

Pan Qiaodong1,Li Yanhong1,Zhang Jing1,Hu Ting1,Hou Yu1,Tang Shen1ORCID

Affiliation:

1. Guilin University of Technology

Abstract

Abstract Malathion, an extensively used organophosphorus pesticide, poses a high potential risk of toxicity to humans and the environment. Shewanella (S.) oneidensis MR-1 has been proposed as a strain with excellent bioremediation capabilities, capable of efficiently removing a wide range of hard-to-degrade pollutants. However, the physiological and biochemical response of S. oneidensis MR-1 to malathion is unknown. Therefore, this study aimed to examine how S. oneidensis MR-1 responds physiologically and biochemically to malathion while also investigating the biodegradation properties of the pesticide. The results showed that the 7-day degradation rates of S. oneidensis MR-1 were 84.085, 91.562, and 94.014% at malathion concentrations of 10, 20, and 30 mg/L, respectively. As the concentration of malathion increased, superoxide dismutase and catalase activities were inhibited, leading to a significant rise in malondialdehyde content. This outcome can be attributed to the excessive production of reactive oxygen species (ROS) triggered by malathion stress. In addition, ROS production stimulates the secretion of soluble polysaccharides, which alleviates oxidative stress caused by malathion. Malathion-induced oxidative damage further exacerbated the changes in the cellular properties of S. oneidensis MR-1. During the initial stages of degradation, the cell density and total intracellular protein increased significantly with increasing malathion exposure. This can be attributed to the remarkable resistance of S. oneidensis MR-1 to malathion. Based on scanning electron microscopy observations, continuous exposure to contaminants led to a reduction in biomass and protein content, resulting in reduced cell activity and ultimately leading to cell rupture. In addition, this was accompanied by a decrease in Na+/ K+- ATPase and Ca2+ / Mg2+- ATPase levels, suggesting that malathion-mediated oxidative stress interfered with energy metabolism in S. oneidensis MR-1. The findings of this study provide new insights into the environmental risks associated with organophosphorus pesticides, specifically malathion, and their potential for bioremediation.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3