Search for high-creep-strength welding conditions considering HAZ shape factors

Author:

IZUNO Hitoshi1ORCID,Demura Masahiko1,Yamazaki Masayoshi1,Minamoto Satoshi1,Sakurai Junya1,Nagata Kenji1,Mototake Yoh-ichi2,Abe Daisuke3,Torigata Keisuke3

Affiliation:

1. National Institute for Materials Science: Busshitsu Zairyo Kenkyu Kiko

2. Hitotsubashi Daigaku

3. IHI Corporation

Abstract

Abstract The creep rupture life of ferritic heat-resistant steel weld joints is limited by Type IV cracking that occurs in the heat-affected zone (HAZ), whose shape affects creep damage accumulation. In this study, we address the inverse problem of extending the creep rupture life of weld joints by controlling HAZ shape via welding conditions. As reported separately, we have developed a workflow that predicts weld joint creep rupture life from the predicted HAZ shape from welding conditions, and have implemented it in the material design system. Using this workflow, we presented a tandem Bayesian model for predicting the creep rupture life from welding conditions via the geometric features of HAZ shapes (HAZ shape factors), which are considered to determine the creep rupture life. The prediction model of a HAZ shape factor from welding conditions was formed by Gaussian process regression. The prediction model of the creep rupture life was formed by Bayesian linear regression. These models were probabilistically connected by Bayesian statistical mathematics. An algorithm to increase the creep rupture life was developed to search for welding conditions. This method was applied to a 2 1/4Cr–1Mo heat-resistant steel weld joint simulated with a plate I-bevel three-layer gas tungsten arc welding. The number of welding conditions combination reaches 78 = 5764801. Start from 49 initial HAZ shape factors and 22 creep rupture life data, we performed forward calculations of 20 rupture lives to find welding conditions that can improve the creep rupture life by 12% over the initial data.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3