Determining the size of batteries and solar sources in a zero cost building using PSO algorithm

Author:

Hosseinikavkani Seyed1,Sedaghati Reza2,Ghaedi Amir3

Affiliation:

1. Department of Electrical Engineering, Kharg Branch, Islamic Azad University, Kharg, Iran

2. Department of Electrical Engineering, Beyza Branch, Islamic Azad University, Beyza, Iran

3. Department of Electrical Engineering, Dariun Branch, Islamic Azad University, Dariun, Iran

Abstract

The production and consumption of non-renewable energy resources have disrupted the environment's biodiversity cycle. Global climate change, including worldwide warming, has made human life both now and in the future. The construction industry in the world has a significant share in the demand for energy consumption in these challenges. Therefore, the primary purpose of this paper is to implement standards to save and prevent energy loss to control and limit the demand for energy requested from the power network. Constructing a building with self-sufficient energy production that meets its energy needs by producing clean energy becomes more important. It also sells the excess energy to the grid, known as zero energy buildings. In the present paper, the issue is a constrained optimization problem that aims to minimize the total annual cost, including the initial investment cost for PV and batteries and their maintenance costs, as well as the cost of network exchanges. Among the limitations, the proposed model can mention the restrictions governing the battery, such as the limitations of the battery state of charge (SoC). The problem under optimization is a mixed integers nonlinear programming (MINLP) that will be solved by a particle swarm optimization (PSO) algorithm considering the total cost minimization.

Publisher

National Library of Serbia

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Mechanical Engineering,Energy Engineering and Power Technology,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3