Effect of pressure broadening on the radiative heat transfer by CO and CH4 gases using line by line method with latest high-temperature database

Author:

Yang Yu1,Zheng Shu1,He Yuzhen1,Xu Mingxin1,Luo Zixue2,Lu Qiang1

Affiliation:

1. National Engineering Laboratory for Biomass Power Generation Equipment, North China Electric Power University, Beijing, China

2. State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei, China

Abstract

As the development of current propulsion technology such as gas turbine and rocket chamber moving to higher working pressure, the radiative parameters of fuel, such as CH4or CO, are required at elevated pressures, which in some cases are calculated without considering the pressure effect of line broadening. To investigate the pressure effect of line broadening on the radiative heat transfer, the radiative heat sources of a one-dimensional enclosure filled with CH4/CO and Planck mean absorption coefficients at elevated pressures were calculated using the statistical narrow band(SNB)and line by line (LBL)methods. The radiative parameters were conducted using high-temperature molecular spectroscopic(HITEMP)2019 (for CO) and HITEMP 2020 (for CH4) databases. The results showed that the pressure effect of line broadening on the calculations of radiative heat source of CH4can be ignored when HITEMP 2020 database was used. For CO medium, the pressure effect of line broadening was over 40% at 30 atm in all cases whichever methods and databases were used. The pressure broadening has a strong effect on the Planck mean absorption coefficient below 1000 K for CH4 and at the temperature of 500-900K for CO at 30 atm. The maximum pressure effects were 22% for CH4 and 18% for CO at 30 atm, which illustrated the pressure effect of line broadening needed to be taken into account in the calculation of Planck mean absorption coefficient.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3