Experimental study on collaborative enhancement of led heat dissipation characteristics by pulsating heat pipe and heat pipe

Author:

Shang Fumin1,Ju HaiJiao2,Liu Chaoyue3,Yan Tianhai2,Cao Xin2,Liu Dong2,Liu Jianhong2

Affiliation:

1. Changchun Institute of Technology, School of Energy and Power Engineering, China Changchun, China + Jilin Engineering Research Center for Building Energy Supply and Indoor Environment Control, China Changchun, China

2. Changchun Institute of Technology, School of Energy and Power Engineering, China Changchun, China

3. Changchun Xida Electronic Technology Co., LTD., China Changchun, China

Abstract

The objective of this research is to experimentally evaluate the specific impact of a collaborative heat sink composed of gravity heat pipes (GHP) and pulsating heat pipes (PHP) on the thermal efficiency of LED light sources. The heat sink developed in this experiment is designed to improve the thermal management system, ensuring that LED operate within a safe temperature range, which is crucial as the performance of LED is directly affected by their junction temperature. An HP-PHP collaborative heat sink was employed in the experiment, where PHP served as heat dissipating fins to enhance its thermal performance, while HP handles the majority of the heat transfer tasks. The results showed that under forced convection conditions, the HP-PHP collaborative heat sink can increase the maximum thermal power capacity of LED to 192 W. The HP-PHP collaborative heat sink can reduce the substrate?s temperature to below 70.5 ?C in passive mode when the LED input power does not exceed 96 W. Additional experimental results show that the minimum thermal resistance of the collaborative heat sink is 0.19 K/W under natural-convection conditions, under forced convection conditions, this value drops to 0.15 K/W, which still lower than the non-collaborative heat sink. These results demonstrate that the contact thermal resistance between HP and PHP significantly enhances the thermal performance of the collaborative heat sink. Therefore, this collaborative type of heat sink is an effective method for cooling high power LED.

Publisher

National Library of Serbia

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3