An experimental study of the combusition and emission performances of 2,5-dimethylfuran diesel blends on a diesel engine

Author:

Xiao Helin1,Zeng Pengfei1,Zhao Liangrui1,Li Zhongzhao1,Fu Xiaowei1

Affiliation:

1. Wuhan University of Technology, Hubei Key Laboratory of Advanced Technology for Automotive Component, Wuhan, China

Abstract

Experiments were carried out in a direct injection compression ignition engine fueled with diesel-dimethylfuran blends. The combustion and emission performances of diesel-dimethylfuran blends were investigated under various loads ranging from 0.13 to 1.13 MPa brake mean effective pressure, and a constant speed of 1800 rpm. Results indicate that diesel-dimethylfuran blends have different combustion performance and produce longer ignition delay and shorter combustion duration compared with pure diesel. Moreover, a slight increase of brake specific fuel consumption and brake thermal efficiency occurs when a Diesel engine operates with blended fuels, rather than diesel fuel. Diesel-dimethylfuran blends could lead to higher NOx emissions at medium and high engine loads. However, there is a significant reduction in soot emission when engines are fueled with diesel-dimethylfuran blends. Soot emissions under each operating conditions are similar and close to zero except for D40 at 0.13 MPa brake mean effective pressure. The total number and mean geometric diameter of emitted particles from diesel-dimethylfuran blends are lower than pure diesel. The tested fuels exhibit no significant difference in either CO or HC emissions at medium and high engine loads. Nevertheless, diesel fuel produces the lowest CO emission and higher HC emission at low loads of 0.13 to 0.38 MPa brake mean effective pressure.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3