Experimental investigation of using graphene nanoplatelets and hybrid nanofluid as coolant in photovoltaic thermal systems

Author:

Alshikhi Omran1,Kayfeci Muhammet2

Affiliation:

1. Department of Energy Systems Engineering, Institute of Graduate Studies, Karabuk University, Karabuk, Turkey

2. Department of Energy Systems Engineering, Faculty of Technology, Karabuk University, Karabuk, Turkey

Abstract

It is a common observation that the photovoltaic (PV) panel shows a compromised performance when its temperature rises. To handle the performance reduction, most PV panels are equipped with a thermal absorber for removing the solar cells? excessive heat with the help of a heat transfer fluid. The mentioned thermal absorber system is termed as PV thermal or simply PV/T. This study aims to experimentally investigate the effects of a graphene nanoplatelets nanofluid, distilled water, and hybrid nanofluid as transfer fluids in PV/T collectors. A hybrid nanofluid comprises Al2O3 and graphene nanoplatelets. An outdoor experimental set-up was installed and tested under the climatic conditions in Karabuk, Turkey, to measure the inlet as well as outlet PV/T fluid temperatures, ambient temperature with solar radiation, and surface temperatures of both PV/T collector and the PV panel. The mass percentage of the coolant fluids was 0.5% (by weight) and their flow rate was 0.5 Lpm. Results show that the graphene nanoplatelets nanofluid is the most effective fluid because it showed superior thermal efficiency among all the tested fluids. Adding a thermal unit to the PV/T unit increased the overall energy efficiency by 48.4%, 52%, and 56.1% using distilled water, hybrid nanofluid, and graphene nanofluid, respectively

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3