Synchronization conditions for stochastic landslide chain model with delayed coupling

Author:

Vasovic Nebojsa1,Kostic Srdjan2,Todorovic Kristina3,Kuzmanovic Dragoslav4

Affiliation:

1. Department of Applied Mathematics and Informatics, Faculty of Mining and Geology, University of Belgrade, Belgrade, Serbia

2. Geology Department, Jaroslav Černi Water Institute, Belgrade + Faculty of Technical Sciences, University of Novi Sad, Novi Sad, Serbia

3. Department of Mathematics and Physics, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia

4. Faculty of Transport and Traffic Engineering, University of Belgrade, Belgrade, Serbia

Abstract

We examine the conditions for synchronization of landslide stochastic chain model with delayed coupling. Firstly, a new chain model for landslide dynamics is proposed, with the included effect of delayed coupling and background noise. The model is of the microscopic type, where the state of each block in the chain is influenced by the previous state of the same block and its neighbors as well as by noise. Secondly, we examine the stochastic synchronization of such a system of stochastic delay-differential equations. A sufficient condition for the exponential mean square stability of the synchronization is obtained. The sufficient condition indicates that the uni-directional asymmetric coupling induces the synchronization much more efficiently than the bi-directionally symmetric one. From the practical viewpoint, the results obtained confirm that different parts of the large unstable slope could exhibit synchronized activity under certain conditions, which indicates their possible larger influence on the structures (and generation of corresponding deformation) compared to the individual effect of unsynchronized activities.

Publisher

National Library of Serbia

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3