Simulation and experimental study on performance analysis of solar photovoltaic integrated thermoelectric cooler using MATLAB Simulink

Author:

Nadimuthu Lalith1,Selvaraj Divya1,Victor Kirubakaran1

Affiliation:

1. Centre for Rural Energy, The Gandhigram Rural Institute-Deemed to be University, Gandhigram, Dindigul, Tamil Nadu, India

Abstract

The present study investigates the performance of solar photovoltaic integrated thermoelectric cooler (TEC) using MATLAB Simulink. The enhancement of efficiency has been achieved using an effective heat removal mechanism from the hot side heat sink. Since the hot side temperature is a crucial parameter. The intrinsic material properties like Seebeck coefficient (?), Thermal Conductance (K) and Electrical resistance (R) of the thermoelectric module are carefully estimated using analytical method and reported. The MATLAB Simulink Peltier module is developed based on the estimated intrinsic properties. The effect of system Voltage (V) and Current (A) on the thermal parameters like cooling capacity (QC) and Coefficient of performance (COP) has been investigated. The simulation study is validated by conducting a series of experimental analysis. The experimental model is equipped with a 100 Wp polycrystalline solar photovoltaic module to integrate and power the 12V/5 A of the 60-Watt thermoelectric cooler. Moreover, the results reveal that there is a significant effect of ambient and hot side temperature on the thermoelectric cooler performance. The fin-type conductive mode of heat transfer mechanism is adopted along with the convective forced air-cooling system to achieve effective heat removal from the hot side. The infrared thermographic investigation is carried out for ascertaining effective heat removal.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3