Low temperature simulation of ammonia refrigeration based on dissipative molecular dynamics

Author:

Liu Xiao-Yan1,Yang Yang1,Zhao Hai-Qian1,Xu Ying1,Chen Shu2

Affiliation:

1. School of Mechanical Science and Engineering, Northeast Petroleum University, Daqing, Heilongjiang, China

2. Petrochina Tarim Oilfield Company,Korla,Xinjiang, China

Abstract

To solve the problem of heat resistance of the oil film in the evaporator pipeline of the ammonia refrigeration system, it is extremely important to study the interaction mechanism of the oil/ammonia system. The method of dissipative molecular dynamics is used to simulate the oil/ammonia flow state at different temperatures and concentrations, and the mechanism of its interaction was analyzed. It was also found that various parameters are greatly affected by temperature in the research process, the linear relationship of temperature on various parameters was quantitatively calculated. The oil/ammonia system were divided into emulsion and layered liquid. The oil phase (or ammonia phase) with low percentage at low temperature all exists in the form of droplets. The oil-ammonia interfacial tension first increases and then decreases with the increase of oil content. At the same temperature, the interfacial tension reached its maximum when the oil content was 70%. The oil percentage of 30% concentration was the phase inversion point. When the oil percentage was 30-70%, the oil and ammonia two phases were stratified, and the oil adhered to the surface of the pipe wall. Therefore, the heat transfer performance of the system was the worst when the oil content was 30-70%. As the temperature increased, the interaction parameter aij decreased significantly. The linear relationship between ? and 1/T was very consistent with the Flory-Huggins mean field theory. This linear equation provided a basis for subsequent related research.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3