The effects of hydrogen sulfide synthesis inhibition in lindane-induced seizures in rats: A behavioral and EEG study

Author:

Sutulovic Nikola1ORCID,Rasic-Markovic Aleksandra1ORCID,Grubac Zeljko1,Djuric Emilija1,Hrncic Dragan1

Affiliation:

1. Laboratory of Neurophysiology, Institute of Medical Physiology “Richard Burian”, Faculty of Medicine, University of Belgrade, Belgrade, Serbia

Abstract

Lindane-induced seizure in rats is a model of refractory generalized epilepsy. Hydrogen sulfide (H2S) is a gasotransmitter with different physiological and pathological roles. Cystathionine-?-synthase (CBS) is a major enzyme responsible for H2S production in the brain. The aim of this study was to investigate the effects of H2S production inhibition using aminooxyacetate (a CBS inhibitor) on behavioral and EEG manifestations of lindane-induced seizures. Male Wistar rats with previously implanted EEG electrodes were intraperitoneally (i.p.) treated with 4 mg/kg lindane and observed for convulsive behavior and EEG manifestations during the next 30 min. Aminooxyacetate (5, 15 and 25 mg/kg, i.p.) or saline, was injected 30 min prior to lindane. Convulsive behavior was assessed by seizure incidence, latency time and severity (grades 0-4). The number and duration of ictal periods in the EEG were also analyzed. Seizure incidence was higher in rats treated with aminooxyacetate (AOA) before lindane, but not significantly when compared with those treated only with lindane. However, AOA significantly decreased the latency time and augmented the severity of lindane-induced seizures in a dose-dependent manner. EEG analysis revealed an increased number and duration of ictal periods in rats receiving AOA prior to lindane. H2S production inhibition aggravated lindane-induced seizures, which showed a functional relationship between H2S and the effects of lindane.

Funder

Ministry of Education, Science and Technological Development of the Republic of Serbia

Publisher

National Library of Serbia

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3