Copper deposits obtained by pulsating overpotential regime with a long pause and pulse duration from sulfated solutions

Author:

Shafiei Fatemeh1,Jafarzadeh Kourosh1,Madram Ali2

Affiliation:

1. Faculty of Materials Engineering. Malek-Ashtar University of Technology, Tehran, Iran

2. Faculty of Chemical Engineering. Malek-Ashtar University of Technology, Tehran, Iran

Abstract

The morphologies of the copper deposits obtained by pulsating overpotential regime with prolonged pulse and pause durations from the solution of 0.15 M CuSO4 in 0.50 M H2SO4 at overpotentials lower, higher and belonging to the plateau of limiting diffusion current density were compared with those obtained by the same electrodeposition regime from solutions of 0.075 and 0.30 M CuSO4 in 0.50 M H2SO4 and 0.15 M CuSO4 in 0.25 and 1.00 M H2SO4 at overpotentials outside the plateau of limiting diffusion current density. These samples were characterized by scanning electron microscopic (SEM) analysis and the cathodic polarization characteristics from solutions compared. Increasing the Cu(II) concentration led to an increase in the limiting diffusion current density. Decreasing the H2SO4 concentration shifts both beginning and the end of the plateau of the limiting diffusion current density towards higher electrodeposition overpotentials. Also, electrodeposition in solutions of 0.15 M CuSO4 in 0.25 and 1.00 M H2SO4 led to the formation of morphological forms of copper deposits characteristic for electrodeposition of copper from higher CuSO4 or lower H2SO4 in solution at some higher overpotentials.

Publisher

National Library of Serbia

Subject

General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3