Numerical analysis of thermal performance of heat exchanger: Different plate structures and fluids

Author:

Khan Muhammad1,Song Yong1,Huang Qunying1

Affiliation:

1. Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China

Abstract

Due to compact size, high power density, low cost and short construction time, the Small Modular Reactors (SMRs) are considered as one of the candidate reactors, in which the power generation system is important with a compact heat exchanger for modular construction. Therefore, the effect of plate structure and nature of the working fluid on the thermal performance of Plate Heat Exchanger (PHE) are analyzed for the design of compact and efficient heat exchanger. The heat transfer rate, temperature counters, velocity vectors and pressure drop have been optimized and investigated using FLUENT. The Nusselt number has been calculated for the corrugated and flat PHE to validate the convective heat transfer. The numerical results are agreed well with correlation within deviation of ~ 5-7%. The performance of heat exchanger can be improved by controlling the mass flow rate and temperature of working fluid. The corrugation PHE increases the heat transfer rate 20 % and effectiveness 23 %, respectively, as compare to flat PHE when the working fluid is water. In the case of air, heat transfer rate and effectiveness are about 10 % and 9 %, respectively. The results show that the corrugated PHE is more effective than the flat PHE because corrugation pattern enhances the turbulence of fluids, which further increase heat transfer rate and coefficient. The selection of the working fluid and structure of the plate must be considered carefully for efficient and compact design of heat exchanger.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3