Chemical characterization of the photodegradation products of midazolam complexes with randomly methylated-β-cyclodextrin by HPLC and LC-MS/MS

Author:

Agatonovic-Kustrin Snezana1,Lebete Mosimotsana2,Brown Michael2,Morton David3,Glass Beverley4

Affiliation:

1. Universiti Teknologi MARA (UiTM), Faculty of Pharmacy, Selangor, Malaysia

2. Rhodes University, Faculty of Pharmacy, Grahamstown, South Africa

3. La Trobe University, The School of Pharmacy and Applied Science, La Trobe Institute of Molecular Sciences, Bendigo, Victoria, Australia

4. James Cook University, Pharmacy, College of Medicine and Dentistry, Townsville, Queensland, Australia

Abstract

Midazolam, a potent anxiolytic drug with sedative properties, is susceptible to degradation by both light and hydrolysis in aqueous solution. When formulated as an intranasal product it was found to be effective in achieving seizure control in epileptic patients. In order to deliver an adequate therapeutic dose to a patient, a nasal formulation requires the concentration of midazolam to be higher than its? aqueous solubility. One way to increase midazolam solubility to a therapeutic concentration, is complexation with randomly methylated-?-cyclodextrin. Thus, it is important to determine how complexation with cyclodextrin affects the rate of degradation and type of midazolam degradants that are formed. We have found that complexation with cyclodextrin decreases its photostability. More importantly, the degradation profile for midazolam is significantly altered when it is complexed with randomly methylated-?-cyclodextrin, what we partly confirmed in our previous work.1 By continuing our study we have found that degradation products, not observed on the photodegradation of uncomplexed midazolam are observed in significant quantities when it is complexed with randomly methylated-?-cyclodextrin. The decreased photostability was accompanied by the appearance of two new degradation products, an intermediate structure and a dimer. Photoproduct formation followed the same pattern as in the forced degradation studies, further confirming the presence of an intermediate. The production of these new photodegradants, characterized with their MS spectra, as well as proposed degradation mechanism of midazolam is discussed.

Publisher

National Library of Serbia

Subject

General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. 1,4-Benzodiazepines: Chemical stability and cyclodextrin solubilization;Journal of Drug Delivery Science and Technology;2021-12

2. Physicochemical stability of compounded midazolam capsules over a one-year storage period;Pharmaceutical Technology in Hospital Pharmacy;2020-01-01

3. Interpol review of controlled substances 2016–2019;Forensic Science International: Synergy;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3