Low velocity drop weight impact behaviour of Al2O3-Ni-ZrO2 and Al2O3-Ni-Cr2O3 ceramic composites

Author:

Kafkaslıoğlu Yıldız Betül1,Büyük Murat2,Tür Yahya3

Affiliation:

1. Department of Metallurgical and Materials Engineering, Sivas University of Science and Technology, Sivas, Turkey

2. Composite Technologies Center of Excellence, Sabancı University-Kordsa, Istanbul Technology Development Zone, Istanbul, Turkey

3. Department of Materials Science and Engineering, Gebze Technical University, Gebze, Turkey

Abstract

Particulate Al2O3 matrix nanocomposites containing 1 vol.%Ni were prepared by the heterogeneous precipitation method and the addition of 5 vol.% ZrO2 (ANZ) or 1 vol.% Cr2O3 (ANC). The prepared samples were subjected to the low energy drop weight impact tests to compare the behaviour of the composites under low energy impact and to investigate the damage mechanisms. The pure Al2O3, Al2O3/Ni, Al2O3/ZrO2 and Al2O3/Cr2O3 compositions with the same additive ratios were also produced to make the comparison systematically. Also, the Vickers hardness measurements were carried out and a significant increase in hardness was attained for both ANZ and ANC composites. The average hardness value around 24.8?1.0GPa was measured for the ANZ and ANC composites which means ~15% improvement compared to the pure Al2O3. Between all the compositions, the maximum force (Fmax) value was obtained for the ANZ (for 12 J impact energy level Fmax = 26617N) according to the low energy drop weight impact test results. Tensile radial crack network formation, cone formation, fracture and crushing of the cone structure were observed as damage mechanisms for all compositions. The volume of conical frustum structure was evaluated for each composition and the effect of microstructure on possible ballistic performance was also discussed.

Publisher

National Library of Serbia

Subject

Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3