Numerical analysis of gray gas radiation effects on heat and mass transfer in an annular cavity

Author:

Boussandel Abdelaziz1,Laouar-Meftah Siham2,Retiel Noureddine1

Affiliation:

1. Numerical and Experimental Modelling of the Mechanical Phenomena Laboratory, Faculty of Sciences and Technology, Abdelhamid Ibn Badis University, Mostaganem, Algeria

2. Faculty of Hydrocarbons and Chemistry, M’Hamed Bougara University, Boumerdes

Abstract

This study deals with a numerical investigation of coupled double diffusive natural convection with thermal radiation in an annular cavity containing a gray gas mixture. The black vertical cylindrical walls are maintained at different temperatures and concentrations to create cooperating flows. The finite volume method (using the SIMPLER algorithm) is used to solve the governing equations and the discrete ordinate method (with S8 quadrature) to treat the radiative aspect of the problem. A parametric study illustrating the influence of the optical thickness and the ratio of buoyancy forces, on the flow field and heat and mass transfer for Reyleigh number equal to 5 106 and aspect ratio equal to 1, is performed. The numerical results show that gas radiation modifies the flow structure and the distribution of temperature and concentration in the cavity. The effect of permutation of boundary conditions, between the vertical walls, on heat and mass transfer is also considered. The thermal radiation reduces the total heat transfer in the annular space regardless of the configuration of the boundary conditions.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3