Numerical study of turbulence on drag coefficient determination for particle agglomerates

Author:

de Oliveira1,Zanata Julio1,Lopes Gabriela1

Affiliation:

1. Department of Chemical Engineering, Federal University of São Carlos, São Carlos, São Paulo, Brazil

Abstract

Numerical simulations of the flow surrounding particle agglomerates were carried out using computational fluid dynamics to assess the ability of five RANS turbulence models to estimate the drag coefficient in particle agglomerates. Simulations were carried out in steady conditions for Reynolds numbers between 1 and 1500. Streamlines showed that symmetrical agglomerates present a velocity profile similar to the single sphere profile. Results showed that both Spalart-Allmaras and SST k-? turbulence models could represent the flow profile in the regions near and far from the walls of the agglomerates and the wake region in the rear of the agglomerates. The RNG k-? model showed poor quality in predicting the velocity profile and the drag coefficient. The drag coefficient obtained by simulations presented a trend better represented by the Tran-Cong model, also showing that deviations from the predictions decreased as the packing density of the agglomerate increased. The use of steady RANS simulations showed to be a feasible and efficient method to predict, with low computational cost, the drag coefficient in particle agglomerates. For the transition and turbulent flows, results presented good agreement, with deviations between -15% and 13%, while for lower Reynolds numbers, deviations varied between -25% and 5%.

Publisher

National Library of Serbia

Subject

General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Drag coefficient on particle agglomerates: a CFD study with experimental validation;Journal of the Brazilian Society of Mechanical Sciences and Engineering;2023-08-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3