Y3Al5O12:Re3+ (Re=Ce, Eu, and Sm) nanocrystalline powders prepared by modified glycine combustion method

Author:

Lojpur V.1,Egelja A.1,Pantic J.1,Djordjevic V.1,Matovic B.1,Dramicanin M.D.1

Affiliation:

1. Vinča Institute of Nuclear Sciences, Belgrade

Abstract

Yttrium aluminum garnet doped with rare earth ions (Ce3+, Eu3+ and Sm3+) was prepared by modified glycine method. Ce3+ as a dopant was used in four different concentrations (Y3-xCexAl5O12; x(%) = 1, 2, 3, 5), while doping concentration of Eu3+ and Sm3+ was Y3-xEuxAl5O12; x(%) = 3 and Y3-xSmxAl5O12; x(%) = 1, respectively. Phase composition of powders was investigated using XRD technique and expected target phase was confirmed. Photoluminescent characterization included measurements of excitation and emission spectra, as well as determination of emission decays. Y3-xCexAl5O12 shows intense broad-band emission, with maximum in green spectral region, at about 524 nm under ultraviolet or blue excitation. The origin of the luminescence is the 5d1?4f1 transition which is both parity and spin allowed. Ultraviolet and blue excitations of Eu3+ and Sm3+ doped Y3Al5O12 produce intense orange and red emissions. These emissions are phosphorescent in character and come from spin forbidden f-f electron transitions in Eu3+ and Sm3+ ions. For the case of Eu3+ doping emission comes mainly from 5D0?7F1 transitions with Stark components peaking at 590 nm and 590.75 nm, and with emission decay of 4.15 ms. In the case of Sm3+ doping, the emission spectrum, shows 4G5/2?6H5/2, 4G5/2?6H7/2, and 4G5/2?6H9/2 transitions, with the most intense stark components positioned at 567.5 nm, 617 nm, and 650 nm, respectively and for transition centered at 617 nm, emission decay is 3.12 ms.

Funder

Ministry of Education, Science and Technological Development of the Republic of Serbia

Publisher

National Library of Serbia

Subject

Materials Chemistry,Metals and Alloys,Condensed Matter Physics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3