Extending the Bejan number to a general form

Author:

Awad Mohamrd1,Lage Jose2

Affiliation:

1. Mechanical Power Engineering Department, Faculty of Engineering Mansoura University Mansoura, Egypt

2. Mechanical Engineering Department, Bobby B. Lyle School of Engineering Southern Methodist, Dallas, USA

Abstract

A modified form of the Bejan number (Be), originally proposed by Bhattacharjee and Grosshandler for momentum processes, is obtained by replacing the dynamic viscosity (m) appearing in the original proposition with the equivalent product of the fluid density (r) and the momentum diffusivity of the fluid (n). This modified form is not only more akin to the physics it represents but it also has the advantage of being dependent on only one viscosity coefficient. Moreover, this simple modification allows for a much simpler extension of Be to other diffusion processes, such as a heat or a species transfer process, by simply replacing the diffusivity coefficient. Consequently, a general Be representation for any process involving pressure-drop and diffusion becomes possible. It is shown that this general representation yields analogous results for any process satisfying the Reynolds analogy (i.e., when Pr = Sc = 1), in which case the momentum, energy and species concentration representations of Be turn out to be the same.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3