Bifurcation analysis of multistability and hysteresis in a model of HIV infection

Author:

Mironov I. V.1,Khristichenk M. Yu.2,Nechepurenko Yu. M.2,Grebennikov D. S.3,Bocharov G. A.3ORCID

Affiliation:

1. Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences; Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation

2. Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences; Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences

3. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation; Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences

Abstract

The infectious disease caused by human immunodeficiency virus type 1 (HIV-1) remains a serious threat to human health. The current approach to HIV-1 treatment is based on the use of highly active antiretroviral therapy, which has side effects and is costly. For clinical practice, it is highly important to create functional cures that can enhance immune control of viral growth and infection of target cells with a subsequent reduction in viral load and restoration of the immune status. HIV-1 control efforts with reliance on immunotherapy remain at a conceptual stage due to the complexity of a set of processes that regulate the dynamics of infection and immune response. For this reason, it is extremely important to use methods of mathematical modeling of HIV-1 infection dynamics for theoretical analysis of possibilities of reducing the viral load by affecting the immune system without the usage of antiviral therapy. The aim of our study is to examine the existence of bi-, multistability and hysteresis properties with a meaningful mathematical model of HIV-1 infection. The model describes the most important blocks of the processes of interaction between viruses and the human body, namely, the spread of infection in productively and latently infected cells, the appearance of viral mutants and the development of the T cell immune response. Furthermore, our analysis aims to study the possibilities of transferring the clinical pattern of the disease from a more severe state to a milder one. We analyze numerically the conditions for the existence of steady states of the mathematical model of HIV-1 infection for the numerical values of model parameters corresponding to phenotypically different variants of the infectious disease course. To this end, original computational methods of bifurcation analysis of mathematical models formulated with systems of ordinary differential equations and delay differential equations are used. The macrophage activation rate constant is considered as a bifurcation parameter. The regions in the model parameter space, in particular, for the rate of activation of innate immune cells (macrophages), in which the properties of bi-, multistability and hysteresis are expressed, have been identified, and the features cha rac terizing transition kinetics between stable equilibrium states have been explored. Overall, the results of bifurcation analysis of the HIV-1 infection model form a theoretical basis for the development of combination immune-based therapeutic approaches to HIV-1 treatment. In particular, the results of the study of the HIV-1 infection model for parameter sets corresponding to different phenotypes of disease dynamics (typical, long-term non-progressing and rapidly progressing courses) indicate that an effective functional treatment (cure) of HIV-1-infected patients requires the development of a personalized approach that takes into account both the properties of the HIV-1 quasispecies population and the patient’s immune status.

Publisher

Institute of Cytology and Genetics, SB RAS

Subject

General Biochemistry, Genetics and Molecular Biology,General Agricultural and Biological Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3