Effects of nitric oxide on microviscosity and polarity of erythrocyte membranes in experiment

Author:

Rebrova T. Yu.1ORCID,Podoksenov Yu. K.1ORCID,Afanasiev S. A.1ORCID,Kamenshchikov N. O.1ORCID,Korepanov V. A.1ORCID,Diakova M. L.1ORCID

Affiliation:

1. Cardiology Research Institute, Branch of the Federal State Budgetary Scientific Institution «Tomsk National Research Medical Center of the Russian Academy of Sciences»

Abstract

Enhancement of methods for protecting target organs during coronary artery bypass surgery determined the development of a technology for delivering nitric oxide (NO) to the systemic blood flow using a cardiopulmonary bypass (CB) apparatus, which makes NO available to all organs and tissues.The aim of the study was to access the effect of perioperative NO conditioning on the coefficients of microviscosity and polarity of sheep etythrocyte membranes during experimental surgical intervention using CB.Material and methods. Study was carried out on 20 sheep weighing 30–34 kg. Two groups were formed. In the CB group, 10 sheep underwent the standard clinical protocol of artificial lung ventilation (ALV) and CB. In the CB + NO group, 10 sheep received NO at a dose of 80 ppm through the circuit of ALV apparatus immediately after tracheal intubation. At the start of CB, NO was delivered to the extracorporeal circulation circuit at a dose of 80 ppm for 90 min. After disconnection from CB, NO supply continued through the ALV apparatus at a dose of 80 ppm for 60 min. The coefficients of microviscosity and polarity of sheep erythrocyte membranes were determined by spectrofluorimetry using pyrene probe.Results and discussion. The implementation of CB was accompanied by a statistically significant decrease in the microviscosity coefficient in the zones of proteinlipid contact of sheep erythrocyte membranes. In the zone of total lipids, the microviscosity coefficient did not change after CB implementation. The membrane polarity coefficient at the final stage of the surgery increased significantly in the zone of annular lipids and did not change in the zone of total lipids. NO supply to the circuit of the extracorporeal circulation neutralizes the revealed increase in the microviscosity and polarity of the annular lipids.Conclusions. The introduction of NO into the extracorporeal circulation circuit at the concentration of 80 ppm prevents a decrease in the coefficients of microviscosity and polarity of annular lipids of erythrocyte membranes that occurs during cardiac surgery.

Publisher

Institute of Cytology and Genetics, SB RAS

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3