(Anti)viral Material Design Guided by Scattering Methods

Author:

Watts Samuel,Tran Bettina,Salentinig Stefan

Abstract

Viruses are nature’s own nanoparticles that are highly symmetric and monodisperse in size and shape with well-defined surface chemistry. They have evolved for optimal cell interactions, genetic information delivery and replication by the host cell over millions of years. These features render them into very efficient pathogens that place a severe burden onto the health of our society. At the same time, they are highly interesting objects for colloidal studies and building blocks for advanced bio-inspired materials for health applications. Their characterisation requires sophisticated experimental techniques such as scattering of X-rays, neutrons, and light to probe structures and interactions from the nanometre to the micrometre length-scale in solution. This contribution summarizes the recent progress in the field of virus self-assembly and virus-based biopolymer composites for advanced material design. It discusses the advances and highlights some of the challenges in the characterization of structure and dynamics in these materials with a focus on scattering techniques. It further demonstrates selected applications in the field of food and water purification.

Publisher

Swiss Chemical Society

Subject

General Medicine,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3