Learning Curve of ROSA ONE Spine System for Transpedicular Screw Placement

Author:

Hsu Bing-HungORCID,Liu Heng-WeiORCID,Lee Kha-LiangORCID,Lin Ming-ChinORCID,Chen GaoORCID,Yu JangORCID,Chen Chiao-LingORCID,Su I-ChangORCID,Lin Chien-MinORCID

Abstract

Objective: The study investigated our institutional learning curve for the ROSA ONE spine system (ROSA) based on ROSA usage time.Methods: ROSA was designed to provide high accuracy for spinal pedicle screw placement through a built-in tracking technique. This study was conducted from November 2018 to January 2021. The time taken to complete each step of the robotic workflow was recorded. Patient demographics, comorbidities, surgical indications, and number of screw placements were examined in subgroup analysis. The Curve Fitting-General package (a part of NCSS 2021 software) was used to fit a mathematical model to the learning curve. Patient demographics, imaging data, and surgical time were reviewed retrospectively.Results: A total of 167 patients who had undergone surgery were included. The mean total ROSA usage time was 107.1 ± 27.3 minutes. The estimated learning rate was 90.4%, and the largest slope change occurred close to the time of the 20th surgery. The observed overall learning trend in the 4-screw group could be attributed to screw planning. The presence of scoliosis (p = 0.73) or spondylolisthesis (p = 0.70) did not significantly influence the mean total time (TT) for all patients; however, the mean TT differed significantly (p < 0.01) among subgroups stratified by body mass index, screw number placement, and thoracic spine involvement.Conclusion: To the best of our knowledge, this is the first study to examine the learning curve for the various crucial steps of ROSA-guided pedicle screw placement. The indicative learning curve involved 20 patients who had undergone surgery.

Publisher

The Korean Spinal Neurosurgery Society

Subject

Neurology (clinical),Surgery

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3