Global Research Trends of Exosomes in the Central Nervous System: A Bibliometric and Visualized Analysis

Author:

Zhuo YueORCID,Ai KunORCID,He KeORCID,Wu BoyuORCID,Peng JiayingORCID,Xiang JingORCID,Zhang GuanlinORCID,Jiao ZiyuanORCID,Zhou RuixuanORCID,Zhang HongORCID

Abstract

Objective: Exosomes in the central nervous system (CNS) have become an attractive area of research with great value. However, few bibliometric analysis has been conducted. The study aimed to visualize the scientific trends and research hotspots of exosomes in the CNS by bibliometric analysis.Methods: All potential articles and reviews on exosomes in the CNS published in English from 2001 to 2021 were extracted from the Web of Science Core Collection. The visualization knowledge maps of critical indicators, including countries/regions, institutions, authors, journals, references, and keywords, were generated by CiteSpace and VOSviewer software. Besides, each domain's quantitative and qualitative analysis was also considered.Results: A total of 2,629 papers were included. The number of exosomes-related publications and citations regarding CNS increased yearly. These publications came from 2,813 institutions in 77 countries/regions, led by the United States and China. Harvard University was the most influential institution, while the National Institutes of Health was the most critical funding source. We identified 14,468 authors, among which Kapogiannis D had the most significant number of articles and the highest H-index, while Théry C was the most frequently co-cited. The cluster analysis of keywords generated 13 clusters. In summary, the topic of biogenesis, biomarker, and drug delivery will serve as hotspots in future research.Conclusion: Exosomes-related CNS research has gained considerable attention in the past 20 years. The sources and biological functions of exosomes and their promising role in diagnosing and treating CNS diseases are considered hotspots in this field. The clinical translation of the results from exosomes-related CNS research will be of great importance in the future.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province

Department of Education of Hunan Province

Hunan Province

Postgraduate of Hunan Province

Publisher

The Korean Spinal Neurosurgery Society

Subject

Neurology (clinical),Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3