Enzyme protection systems of erythrocytes in conditions of ascorbate recirculation and oxidative loading

Author:

Dotsenko O. I.ORCID,Taradina G. V.ORCID,Voronych M. V.

Abstract

Vitamin C was shown to partially protect red blood cells from oxidative changes during storage by noticeable reduction of mechanical fragility and hemolysis. In order to maintain the content of ascorbate in the reconstituted form in plasma, the latter is involved in a number of oxidative-reducing processes within red blood cells. This work is a continuation of studies of the effects of ascorbate on the metabolic processes that maintain the viability of red blood cells. Human red blood cells were incubated for five hours at 25 ºC in the oxidizing media system 1 1.0 · 10–4 M ascorbic acid (AscH), 5 · 10–6 M Cu2+, Na-phosphate buffer (0.015 M, pH 7.4), 0.15 M NaCl, and system 2, that contained o-phenanthroline at a concentration of 1.0 · 10–4 M in addition to the components of system 1 medium. For these cells, the changes in the content of reduced glutathione, glutathione enzyme activity, and the state of the membrane electron transport NADH: ferricyanide reductase were determined in time. The obtained data indicate that red blood cells undergo significant oxidative stress under the influence of the oxidative medium. During the first incubation period of erythrocytes in the AscH-Cu2+ environment, the activity of glutathione peroxidase and glutathione-S-transferase reached the maximum values, indicating the presence of H2O2 in the cell and the activation of lipid peroxidation processes. Glutathione-S-transferase activity remained above the control level throughout the entire study period. The activity of glutathione reductase and glucose-6-phosphate dehydrogenase was reduced. The oxidative loading of erythrocytes in the presence of o-phenanthroline was lower, the development of oxidative stress occurred in 90 minutes, but the binding of the o-phenanthroline complexes of Cu2+ to the membrane modified the SH-group of membrane proteins and this reduced the transport capabilities of the dehydroascorbate transporters and the electron transmembrane system, the consequence of which may be the accumulation of oxidized forms of ascorbate outside. We detected the participation of CO-signaling mechanism in hemoglobin deglutathionylation and increase in the content of glutathione. In this work we discuss the role of metabolic reprogramming in red blood cells through thiol-disulfide exchange as a mechanism that can be involved into adaptive responses aimed at counteracting stress in mammalian tissues.

Publisher

Oles Honchar Dnipropetrovsk National University

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3