Criteria for measures of quantum correlations

Author:

Brodutch Aharon,Modi Kavan

Abstract

Entanglement does not describe all quantum correlations and several authors have shown the need to go beyond entanglement when dealing with mixed states. Various different measures have sprung up in the literature, for a variety of reasons, to describe bipartite and multipartite quantum correlations; some are known under the collective name {\it quantum discord}. Yet, in the same sprit as the criteria for entanglement measures, there is no general mechanism that determines whether a measure of quantum and classical correlations is a proper measure of correlations. This is partially due to the fact that the answer is a bit muddy. In this article we attempt tackle this muddy topic by writing down several criteria for a ``good" measure of correlations. We breakup our list into \emph{necessary}, \emph{reasonable}, and \emph{debatable} conditions. We then proceed to prove several of these conditions for generalized measures of quantum correlations. However, not all conditions are met by all measures; we show this via several examples. The reasonable conditions are related to continuity of correlations, which has not been previously discussed. Continuity is an important quality if one wants to probe quantum correlations in the laboratory. We show that most types of quantum discord are continuous but none are continuous with respect to the measurement basis used for optimization.

Publisher

Rinton Press

Subject

Computational Theory and Mathematics,General Physics and Astronomy,Mathematical Physics,Nuclear and High Energy Physics,Statistical and Nonlinear Physics,Theoretical Computer Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Do qubits dream of entangled sheep? Quantum measurement without classical output;New Journal of Physics;2024-05-01

2. Long-time protection of thermal correlations in a hybrid-spin system under random telegraph noise;Physical Review E;2022-09-15

3. Coherence non-activating measurement;Quantum Information Processing;2020-08-24

4. The classical-quantum boundary for correlations: Discord and related measures;Reviews of Modern Physics;2012-11-26

5. On the quantumness of correlations in nuclear magnetic resonance;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2012-10-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3