Physico-chemical assessment of surface water from mining activities in Maiganga coal mine, Gombe state, Nigeria

Author:

Aluwong Kushai CalebORCID,Hashim Mohd Hazizan MohdORCID,Ismail Suhaina,Shehu Shaib Abdulazeez

Abstract

Purpose. Surface water from mining activities may undergo various physico-chemical changes that can impact its quality and ecological health. This study conducted a comprehensive physico-chemical assessment of surface water affected by mining operations, with a particular emphasis on heavy metal content. Methods. These parameters were chosen due to their importance as indicators of water quality and potential contamination. Water samples were collected from different locations within and around Maiganga Coal mine area and analyzed using standard laboratory techniques. The assessment included the measurement of physico-chemical parameters such as temperature, total dissolved solids and concentrations of heavy metals such as chromium, lead, manganese, cadmium and copper. Also, cations and anions such as calcium, magnesium, sodium, potassium, nitrate, chloride sulfate and fluoride that can impact water quality were considered. Findings. The results of the physico-chemical assessment revealed substantial variations of chromium (0.00-0.03 mg/l), lead (0.00-0.05 mg/l), manganese (0.00-12.11 mg/l), cadmium (0.10-0.14 mg/l) and copper (0.00-1.02 mg/l) concentrations. Also, cations and anions such as calcium (0.00-1.13 mg/l), magnesium (11.90-30.07 mg/l), sodium (0.20-1.11 mg/l), potassium (0.10-0.66 mg/l), nitrate (3.90-4.78 mg/l), chloride (84.0-319.0 mg/l), sulphate (8.0-240.0 mg/l) and fluoride (0.00-0.89 mg/l) can impact water quality levels across the sampled surface water bodies. Originality. Evidence of acid mine drainage, caused by mine effluents that are limited to surface water and do not reach groundwater, has been found through analysis of data from wells, ponds, and streams. Practical implications. These variations obtained could be attributed to the discharge of acidic or alkaline substances associated with coal mining activities.

Publisher

Dnipro University of Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3