Dynamic Analysis and in Situ Validation of Perpetual Pavement Response to Vehicular Loading

Author:

Al-Qadi Imad L.1,Wang Hao2,Yoo Pyeong Jun3,Dessouky Samer H.4

Affiliation:

1. Illinois Center for Transportation, University of Illinois at Urbana-Champaign, 205 North Mathews MC-250, Urbana, IL 61801.

2. Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews MC-250, Urbana, IL 61801.

3. Korea Institute of Construction Technology, 2311 Daehwa-Dong, Ilsan-Gu, Goyang-Si, Gyeonggi-Do, Korea 411-712.

4. Advanced Transportation Research and Engineering Laboratory, Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 1611 Titan Drive, Rantoul, IL 61866.

Abstract

A three-dimensional (3-D) finite element (FE) model was developed to predict pavement responses to vehicular loading. The model incorporates measured tire-pavement contact stresses, continuous moving wheel loading, and hot-mix asphalt (HMA) viscoelastic characteristics. The model was fine-tuned using implicit-dynamic analysis and validated using pavement response from accelerated loading. Two tire configurations (dual-tire assembly and wide-base 455 tire) and three full-depth flexible pavement designs (HMA 152 mm, 254 mm, and 420 mm) were used in both FE modeling and accelerated loading tests. The predicted and calculated strain responses at the bottom of HMA were in agreement. Most important, the study shows that vertical shear strain in the upper 76 to 100 mm of the pavement surface is critical for thick pavement and is influenced by the 3-D tire-pavement contact stresses under each tire rib. However, the tensile strain at the bottom of HMA is affected mainly by the total wheel load. The vertical shear strain is responsible for near-surface fatigue cracking as well as HMA primary rutting. Top-down cracking could result from the local vertical shear strain in the upper 25 mm of the HMA where the effect of tire-pavement tangential stresses are the highest. In addition, the study concluded that wide-base tires cause higher longitudinal tensile strain at the bottom of HMA and compressive strain at the top of subgrade, where those responses are highly affected by the total wheel load. However, wide-base tires were found to cause less vertical shear strains near the surface than dual-tire assembly loading regardless of HMA thicknesses.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference25 articles.

Cited by 132 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3