Use of Recursive Partitioning to Predict National Bridge Inventory Condition Ratings from National Bridge Elements Condition Data

Author:

Bektaş Başak Aldemir1

Affiliation:

1. Center for Transportation Research and Education, Institute for Transportation, Iowa State University, Suite 4700, 2711 South Loop Drive, Ames, IA 50010-8664

Abstract

In the United States, National Bridge Inventory (NBI) condition ratings, since the 1970s, and AASHTO’s commonly recognized (CoRe) element condition data, since the 1990s, have provided two major sources of bridge condition data. Although these separate systems of condition assessment had their individual uses, comparing the two, and mapping one from the other had uses for both state and federal agencies and the bridge management community. Alternative methods for this mapping have been proposed in the literature with varying predictive accuracy. With the publication of the new AASHTO Manual for Bridge Element Inspection in 2013, national bridge elements (NBEs) replace the CoRe element condition data as the comparable condition data for the NBI condition ratings. This paper investigates the use of the recursive partitioning method to develop classification trees that predict NBI condition ratings from NBE condition data. On the basis of data from a 2016 submission and 12 transportation agencies, classification trees were developed that presented the most likely NBI condition ratings for a set of logical conditions based on the relative element quantities and the percentage of element quantities in the condition states. The predictive accuracies for the trees are sufficient, and the percentages of exact matches and matches within one error term are better than other studies in the literature. Although the trees can be improved in the future with the availability of more NBE data submissions, the study presented preliminary decision trees with sufficient predictive accuracy that could be adopted by transportation agencies for a variety of bridge management functions.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference13 articles.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine Learning–Based Bridge Maintenance Optimization Model for Maximizing Performance within Available Annual Budgets;Journal of Bridge Engineering;2024-04

2. Machine learning approach for predicting bridge components’ condition ratings;Frontiers in Built Environment;2023-10-09

3. Development of an Optimized Condition Estimation Model for Bridge Components Using Data-Driven Approaches;Journal of Performance of Constructed Facilities;2023-06

4. Quantifying Bridge Element Vulnerability over Time;Transportation Research Record: Journal of the Transportation Research Board;2021-08-30

5. Data-driven stuck pipe prediction and remedies;Upstream Oil and Gas Technology;2021-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3