Design and Operational Concepts of High-Coverage Point-to-Point Transit System

Author:

Cortés Cristián E.1,Jayakrishnan R.1

Affiliation:

1. Department of Civil Engineering and Institute of Transportation Studies, University of California, Irvine, CA 92967

Abstract

Conceptual design and preliminary feasibility simulation results are presented for a flexible transit system for travel from any point to any point based on real-time personalized travel desires, which is now possible because of advances in communications and computing technologies. Although it is demand-responsive, the concept is significantly different from older demand-responsive transit systems, which were often failures. The proposed system requires high coverage, referring to the availability of a large number of transit vehicles (often minibuses or vans), which could also operate in conjunction with private transit and paratransit systems. The design strictly eliminates more than one transfer for any passenger. The system could potentially provide a transit alternative that is much more competitive with personal automobile travel than are conventional transit systems because of significantly lower waiting times. The passenger demand for such a system is uncertain, but preliminary simulations show that under a variety of acceptable demand levels, the system can operate with high cost-effectiveness. The focus is on describing the details of the concept and providing arguments in favor of the system based on simulations. The system essentially attempts to solve a stochastic real-time passenger pickup-and-delivery problem with a large number of vehicles. A strict optimization formulation and solution for such a problem are computationally prohibitive in real time. The design proposed is effectively geared toward a decomposed solution using detailed rules that achieve vehicle selection and route planning. If real-time update of probabilities is included, this scheme could be considered as a form of quasi-optimal stochastic control.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference23 articles.

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3