Methods for determining color characteristics of vegetable raw materials. A review

Author:

Fedyanina N. I.1ORCID,Karastoyanova O. V.1ORCID,Korovkina N. V.1ORCID

Affiliation:

1. Russian Research Institute of Canning Technology

Abstract

Food product quality defines a complex of food product properties such size, shape, texture, color and others, and determines acceptability of these products for consumers. It is possible to detect defects in plant raw materials by color and classify them by color characteristics, texture, shape, a degree of maturity and so on. Currently, the work on modernization of color control systems has been carried out for rapid and objective measuring information about color of plant raw materials during their harvesting, processing and storage. The aim of the work is to analyze existing methods for determining color characteristics of plant raw materials described in foreign and domestic studies. Also, this paper presents the results of the experimental studies that describe the practical use of methods for measuring food product color. At present, the following methods for determining color characteristics by the sensor analysis principle are used: sensory, spectrophotometric and photometric. These methods have several disadvantages. Therefore, computer vision has found wide application as an automated method for food control. It is distinguished by high confidence and reliability in the process of determining freshness, safety, a degree of maturity and other parameters of plant raw materials that are heterogeneous in terms of the abovementioned indicators. The computer vision method is realized in the following systems: conventional, hyperspectral and multispectral. Each subsequent system is a component of the preceding one. Materials presented in the paper allow making a conclusion about the effectiveness of the computer vision systems with the aim of automatic sorting and determining quality of plant raw materials in the food industry.

Publisher

The Gorbatov's All-Russian Meat Research Institute

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Introduction;Citrus Fruits and Juice;2024

2. Formalized Assessment of the Progression of Diseases of Sugar Beet Entering the Sugar Production Process Flow;Russian Agricultural Sciences;2023-12

3. Quality Indicators of Agaricus bisporus after Ultraviolet Treatment;Food Processing: Techniques and Technology;2022-12-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3