Affiliation:
1. Cairo University; College of Agriculture and Veterinary Medicine, Qassim University
2. Alexandria University; College of Agriculture and Veterinary Medicine, Qassim University
3. College of Agriculture and Veterinary Medicine, Qassim University
Abstract
Chemical characteristics and microbiological quality of filtered water generated from municipal water using mono-, di- and penta-stage (5-stage) filters, as well as disposed drain water were investigated. With the application of the household water penta filters, the total dissolved solids (TDS) of the filtered water were highly reduced (0.04–0.07 g/L) and, consequently, electrical conductivity also decreased. Furthermore, total hardness was completely removed (0–2 mg CaCO3/L), as well as the chloride content. In the same manner, the nitrate content in the filtered water resulted from the household water penta filters decreased significantly (0.5–0.9 mg/L). Cations, such as Na+ and K+, in the filtered water were greatly affected and were 18–28 and 2 mg/L, respectively. Filtered water generated from the house-water penta filters was not in compliance with the daily amounts of F, Na and K necessary for teenagers and kids, and it might cause a risk of deficiencies. From the microbiological point of view, the penta-stage filter effectively removed total bacterial counts and total coliforms from water making it completely safe for potable and other domestic uses. The home water mono- and di- filters had low effectiveness of contaminant removal.
Publisher
The Gorbatov's All-Russian Meat Research Institute
Reference31 articles.
1. EPA: United States Environmental Protection Agency (2006). Investigation of the Capability of Point-of-Use/Point-of-Entry Treatment Devices as a Means of Providing Water Security. EPA/600/R-06/012. Retrieved from http://www.aquanetto.ch/data/documents/ressources/EPA_PointofUsePointofEntry.pdf Accessed August 19, 2023
2. Wu J., Cao M., Tong D., Finkelstein Z., Hoek E. M.V. (2021). A critical review of point-of-use drinking water treatment in the United States. npj Clean Water, 4, Article 40. https://doi.org/10.1038/s41545-021-00128-z
3. Królak, E., Raczuk, J., Biardzka, E. (2015). Do water filters improve the quality of potable water? Journal of Elementology, 20(1), 149–159. https://doi.org/10.5601/jelem.2013.18.4.541
4. Daschner, F.D., Rtiden, H., Simon R., Clotten, J. (1996). Microbiological contamination of drinking water in a commercial household water filter system. European Journal of Clinical Microbiology and Infectious Diseases, 15(3), 233–237. https://doi.org/10.1007/BF01591360
5. March H., Garcia X., Domene E., Sauri D. (2020). Tap water, bottled water or in home water treatment systems: Insights on household perceptions and choices. Water, 12(5), Article 1310. https://doi.org/10.3390/w12051310