Numerical analysis of the journal bearings of Keban Hydroelectric Power Plant using different type nanofluids

Author:

Öztürk Murat1ORCID,Çiftçi Erdem2ORCID

Affiliation:

1. MİLLİ SAVUNMA ÜNİVERSİTESİ

2. Gazi Üniversitesi

Abstract

Energy production in line with demand rapidly increases. Fossil fuel systems in use today pose a great threat to the future of the world and in this sense, the interest to the renewable energy sources such as hydroelectric energy systems is increasing. In this study, the heating problem of the journal bearings one of the parts of the hydroelectric energy systems was evaluated, various analysis were performed with the Computational Fluid Dynamics (CFD) approach to eliminate this problem and the results obtained were shared. Initial analyses were performed and evaluated for Mobil DTE 68 oil, which was commonly used as a refrigerant in journal bearings. Then, Al2O3 nanoparticles at concentrations of 3%, 7% and 10% were then added to the refrigerant oil and necessary analyses were performed for these three conditions. Finally, similar analyses were performed in the 3%, 7% and 10% concentration for SiO2. When the obtained temperature changes were examined accordingly, it was obtained that the increase in the concentration of nanoparticles exhibited a characteristic that was inversely proportional to the surface temperature. With the addition of nanoparticles, surface temperatures have been observed to decrease from 80°C to 68°C, but the effect on sharp corners is quite low. In this sense, it has been obtained that nanoparticles can significantly increase the thermal characteristics of Mobil DTE 68 oil, and it has been concluded that nanofluids may be an alternative solution for the overheating problem that occurs in journal bearings.

Funder

EÜAŞ

Publisher

Türkiye Enerji Stratejileri ve Politikalari Araştirma Merkezi (TESPAM)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3