Cationic Diclofenac Lipid Nanoemulsion for Improved Oral Bioavailability: Preparation, Characterization and In Vivo Evaluation

Author:

Veerabrahma Kishan,Madishetty Swapna,Syed Muzammil Afzal,Kandadi Prabhakar

Abstract

Cationic nanoemulsions were reported to have increased bioavailability. The aim of present study was to prepare a cationic lipid nanoemulsion of diclofenac acid (LNEs) for improved oral bioavailability to treat arthritic conditions. The LNEs of diclofenac acid were prepared by using soya bean oil, egg lecithin, cholesterol and stearylamine. Stearylamine was used as positive charge inducer. The LNEs were processed by homogenization and ultrasonication. The formulation composition was selected based on earlier reports. The LNEs were characterized for size and zeta potential. The physical stability of LNEs was studied using autoclaving, centrifugal, desorption (dilution effect) stresses and on storage. The total drug content and entrapment efficiency were determined using HPLC. During in vivo studies in Wistar rats, the pharmacokinetic parameters of LNEs were compared with a prepared diclofenac suspension in sodium CMC mucilage. The selected formulations, F1, F2 and F3, were relatively stable during centrifugal stress, dilution stress and on storage. The drug content was found to be 2.38 ± 1.70 mg/ml for F1, 2.30 ± 0.82 mg/ml for F2, and 2.45 ± 0.66 mg/ml for F3. The entrapment efficiencies were 97.83 ± 0.53%, 97.87 ± 1.22% and 98.25 ± 0.21% for F1, F2 and F3 respectively. The cumulative percentage drug release from F1, F2 and F3 showed more release in pH 6.8 phosphate buffer than in pH 1.2 HCl. During oral bioavailability studies, the LNEs showed higher serum concentrations than a suspension. The relative bioavailability of the LNE formulations F1, F2 and F3 were found to be 2.35, 2.94 and 6.28 times that of F4 suspension and were statistically significant. Of all, the cationic lipid nanoemulsion (F3) was superior in improving bioavailability, when compared with plain emulsion (F1) and cholesterol containing LNE (F2). The study helps in designing the cationic oral nanoemulsions to improve the oral bioavailability of diclofenac.

Publisher

BSP Books Private Limited

Subject

Pharmacology (medical),Clinical Biochemistry,General Pharmacology, Toxicology and Pharmaceutics,Pharmacy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3