YOLOv7‐RepFPN: Improving real‐time performance of laparoscopic tool detection on embedded systems

Author:

Liu Yuzhang1ORCID,Hayashi Yuichiro1,Oda Masahiro12,Kitasaka Takayuki3,Mori Kensaku124

Affiliation:

1. Graduate School of Informatics Nagoya University Aichi, Nagoya Japan

2. Information and Communications Nagoya University Aichi Nagoya Japan

3. Department of Information Science Aichi Institute of Technology Aichi, Nagoya Japan

4. Research Center of Medical Bigdata National Institute of Informatics Tokyo Japan

Abstract

AbstractThis study focuses on enhancing the inference speed of laparoscopic tool detection on embedded devices. Laparoscopy, a minimally invasive surgery technique, markedly reduces patient recovery times and postoperative complications. Real‐time laparoscopic tool detection helps assisting laparoscopy by providing information for surgical navigation, and its implementation on embedded devices is gaining interest due to the portability, network independence and scalability of the devices. However, embedded devices often face computation resource limitations, potentially hindering inference speed. To mitigate this concern, the work introduces a two‐fold modification to the YOLOv7 model: the feature channels and integrate RepBlock is halved, yielding the YOLOv7‐RepFPN model. This configuration leads to a significant reduction in computational complexity. Additionally, the focal EIoU (efficient intersection of union) loss function is employed for bounding box regression. Experimental results on an embedded device demonstrate that for frame‐by‐frame laparoscopic tool detection, the proposed YOLOv7‐RepFPN achieved an mAP of 88.2% (with IoU set to 0.5) on a custom dataset based on EndoVis17, and an inference speed of 62.9 FPS. Contrasting with the original YOLOv7, which garnered an 89.3% mAP and 41.8 FPS under identical conditions, the methodology enhances the speed by 21.1 FPS while maintaining detection accuracy. This emphasizes the effectiveness of the work.

Publisher

Institution of Engineering and Technology (IET)

Subject

Health Information Management,Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3