Atomistic modelling of thin film argon evaporation over different solid surfaces at different wetting conditions

Author:

Hasan Mohammad Nasim1,Shavik Sheikh Mohammad1,Mukut Khaled Mosharraf1,Rabbi Kazi Fazle1,Faisal A H M1

Affiliation:

1. Department of Mechanical Engineering Bangladesh University of Engineering & Technology (BUET) Dhaka 1000 Bangladesh

Abstract

In the present study, non‐equilibrium molecular dynamics (MD) simulations have been performed to reveal the effect of solid–liquid interfacial wettability on the evaporation characteristics of thin liquid argon film placed over the flat solid surface. The atomistic model considered herein comprises of a three‐phase simulation domain having a solid wall over which liquid argon and argon vapour co‐exist. Initially, the system is thermally equilibrated at 90 K for a while after which rapid increase in the solid wall temperature induces a phase change process, i.e. evaporation. Both hydrophilic and hydrophobic wetting conditions of the solid surface have been considered at an evaporation temperature of 130 K for three different surface materials such as platinum, silver, and aluminium. The simulation results show that both the surface wettability and surface material have a significant role in phase transition phenomena of thin liquid film, particularly the surface wettability for the present system configuration. The thermal transport phenomena between the wall and liquid thin film have been studied thoroughly and discussed in terms of wall heat flux, evaporative mass flux, upper bound of maximum possible heat flux etc. The results obtained in the present MD simulation study are compared with the macroscopic predictions based on classical thermodynamics. Interestingly, a very good agreement has been found indicating that macroscopic thermodynamics approach can predict the characteristic of phase change phenomena of nanoscale thin liquid film.

Publisher

Institution of Engineering and Technology (IET)

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3