Comparative analysis of the hybrid gazelle‐Nelder–Mead algorithm for parameter extraction and optimization of solar photovoltaic systems

Author:

Ekinci Serdar1ORCID,Izci Davut1ORCID,Hussien Abdelazim G.2345ORCID

Affiliation:

1. Department of Computer Engineering Batman University Batman Turkey

2. Department of Computer and Information Science Linköping University Linköping Sweden

3. Faculty of Science Fayoum University Fayoum Egypt

4. Applied Science Research Center Applied Science Private University Amman Jordan

5. MEU Research Unit Middle East University Amman Jordan

Abstract

AbstractThe pressing need for sustainable energy solutions has driven significant research in optimizing solar photovoltaic (PV) systems which is crucial for maximizing energy conversion efficiency. Here, a novel hybrid gazelle‐Nelder–Mead (GOANM) algorithm is proposed and evaluated. The GOANM algorithm synergistically integrates the gazelle optimization algorithm (GOA) with the Nelder–Mead (NM) algorithm, offering an efficient and powerful approach for parameter extraction in solar PV models. This investigation involves a thorough assessment of the algorithm's performance across diverse benchmark functions, including unimodal, multimodal, fixed‐dimensional multimodal, and CEC2020 benchmark functions. Notably, the GOANM consistently outperforms other optimization approaches, demonstrating enhanced convergence speed, accuracy, and reliability. Furthermore, the application of the GOANM is extended to the parameter extraction of the single diode and double diode models of RTC France solar cell and PV model of Photowatt‐PWP201 PV module. The experimental results consistently demonstrate that the GOANM outperforms other optimization approaches in terms of accurate parameter estimation, low root mean square values, fast convergence, and alignment with experimental data. These results emphasize its role in achieving superior performance and efficiency in renewable energy systems.

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3