A robust optimization approach for resiliency improvement in power distribution system

Author:

Abshirini Reza1ORCID,Najafi Mojtaba1,Pirkolachahi Naghi Moaddabi1

Affiliation:

1. Department of Electrical Engineering, Bushehr Branch Islamic Azad University Bushehr Iran

Abstract

AbstractThe occurrence of natural disasters has led to an alarming increase in power interruptions, with severe impacts. Compounding this problem is the uncertain nature of data, which presents significant challenges in enhancing the resiliency of power distribution systems following such events. To tackle these issues, this paper introduces a robust optimization approach for improving the resiliency of power distribution systems. The approach encompasses crew teams for switching actions as part of the restoration process, along with demand response programs and mobile generators (MGs). By simultaneously leveraging these elements and considering the uncertainty associated with electrical load and electrical price, the resiliency of the system is enhanced. The objective function is tri‐level, comprising minimum, maximum, and minimum functions. At the first level, the approach minimizes the cost of commitment of combined heat and power plants (CHPs) by taking into account the location of MGs and the reconfiguration structure in power distribution systems. The second level aims to identify the worst‐case scenario for the uncertainty variables. Finally, the third level focuses on minimizing the total operation cost under the worst‐case scenario using demand response programs. The proposed algorithm is implemented on an IEEE 33‐bus test distribution system, with four different cases investigated.

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3