Thermosensitive Micelles Gel to Deliver Quercetin Locally for Enhanced Antibreast Cancer Efficacy: An In Vitro Evaluation

Author:

Sun Yanxue1ORCID,Bai Yun1ORCID,Liu Silu1ORCID,Cui Shuxia2ORCID,Xu Pengcheng1ORCID

Affiliation:

1. Department of Pharmaceutical Engineering, College of Pharmacy, Inner Mongolia Medical University, Hohhot, China

2. Department of Anesthesiology, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China

Abstract

Although quercetin is low cytotoxicity to normal human cells, quercetin is effective against the growth of some tumors. Given the poor blood stability in vivo, insolubility, low delivery efficiency, and poor medicinal properties of quercetin, we developed a local drug delivery system comprising quercetin core’s polymer micelles and F127 hydrogel stroma. In vitro evaluation revealed that quercetin core’s polymer micelles have excellent antitumor activity and could inhibit the multiplication of 4T1 breast cancer cells through the apoptosis pathway. Meanwhile, a rheological study revealed that the quercetin core’s micelles gel possessed excellent properties of hydrogel formation and injectability of liquid preparation as a local drug delivery system after the quercetin core’s polymer micelles were loaded into the F127 hydrogel stroma. Our study findings indicated that the drug stability and stable release capacity of quercetin were vastly improved with the composite formulation of the micelles gel. This not only realized drug injectability but also drug storage in the semisolid form, which is a more comfortable and slower drug-releasing form that will eventually exert a proper therapeutic effect. In conclusion, quercetin micellar hydrogel system has better antitumor activity and excellent hydrogel properties.

Funder

Applied Technology Research and Development Project of the Inner Mongolia Autonomous Region

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Biotechnology,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3